PCle RTL Design

Simulation and FPGA PnR

i

Sy

7 ~ e 7 N
Upstfeam \ { Downstream
Transteiver Transceiver
Transaction Layer Transaction Layer
Data Link Layer Data Link Layer
Physical Layer Physical Layer
x| Rx / AN ™ | R/

ﬁ ——— I H

Uik (2 anos wide)

LUT’s, BRAMs... etc |

Tools: Xilinx Vivado
FPGA board: Nexys A7 FPGA

RTL Design of PCle Protocol

Peripheral Component Interconnect express is a high speed serial bus standard that is

1. Point-to-point (Device A communicate with B over PCle Data Link). This means
interconnect capacitances are very limited, and so you can go to really high speed!

2. Bi-directional (Both A and B can transmit and receive data = transceivers using Dual
Simplex lanes)

3. Scalable to accommodate varying bandwidth needs (One Data Link can have 1,2,4,8,16, 32
lanes)

4. Backwards compatible with previous PCle versions. (You can run PCle-2 GPU on a PCle-4
motherboard)

5. Widely adopted across many markets.

Some specs:

+ Ideally for PCle Gen1, the receiver and transmitter clock frequencies are around 2.5 GHz. Tx
local clock and Rx local clock can differ by 600 ppm. (Max tolerance of +/- 300 ppm on data
rate on each side Tx/Rx = 600 ppm difference in frequency in worse case scenario). This
PCle uses 10MHz and 9.8 MHz local clocks for Upstream and Downstream designs
respectively.

+ Supports 2 lane configuration.

/ Upstream \ K Downstream \

Transgeiver Transceiver

Rx i Tx Rx i Tx
Transacti:on Layer Transacti:on Layer
Rx : Tx Rx : Tx

Data Lir:lk Layer Data Lir:uk Layer

l l

Rx | Tx Rx : Tx

Physica:l Layer Physica:l Layer

I I
Rx | Tx / \ Rx ! Tx /
T\ H Link (2 lanes wide) m 4} -\
VA
7

Vi

o

VA
Link (2 lanes wide) [Yed

PCle Hierarchy and Sub-designs/ Sub-blocks:

This PCle design encompasses Data Link Layers (DLL’s) and Physical Layers (PHY’s) -
Transaction Layers are excluded in the RTL design, with their functionality compensated for in
the test-bench. This approach allows us to simulate and verify the desired transaction layer
behaviors without impacting the RTL.

-
T

A4
DATA LINK PHYSICAL DATA LINK PHYSICAL
LAYER LAYER LAYER LAYER
y v
REPLAY BYTE DE-SERIALIZER JlIDE_SERIALIZER
BUFFER UNSTRIPING Lane 0 Lane 1
ENCODER ENCODER ELASTIC DE-SKEW
(Lane 0) (Lane 1) clhodsetilEs - ZageRE BUFFER BUFFER

I. Data Link Layer (Tx_DLL, Rx_DLL):

The data link layer conveys information between Transaction Layer and Physical Layer (PHY). It
maintains packet integrity and generates DLL packet when communicating. Before the TLP
(Transaction Layer Packet) is transmitted to PHY Layer, DLL will attach a unique sequence
number as well as an LCRC (Link Cyclic Redundancy Code) to the packet. The DLL on the
receiver side will check the correctness of the sequence number and LCRC. If they the TLP
being transmitted is good, and Ack DLLP with the sequence number will be sent back to the
transmitter to acknowledge that it is good; otherwise, a Nak DLLP will be sent instead and the
transmitter will re-send the TLP(s) again from the retry buffer. This PCle will assume CRC errors
never occur, but Tx_DLL will deliberately send a curropted sequence number so as to make
Rx_DLL send a Nak back.

Tx_DLL interface (DLL_transmitter):

clk

lane_num
link_up
rst

tx_phy_throttle

dll_downstream

inst_transmitter

dIIp,ack,nakbar__
dIIp,scheduIed__

dllp_seq_num(5:0]

dll_boundary_info[2:0] tx_dll_boundary_info[2:0]

tx_tl_boundary_info[2:0]

rcv_dllp_received_ |

tl_boundary_info[2:0]

____________________________ lane_num _| dll_data_out[15:0] tx_dll_data_out[15:0]
e ink_up dll_ready tx_dll_ready
phy_throttle dll_tlp_dllp_bar tx_dll_tlp_dllp_bar
rev_dllp[1 S:OL_ rb_depth[6:0] tx_rb_depth[6:0]

__tx_dllp_sending

tx_tl_data_in[15:0]

tl_data_in[15:0]

DLL_transmitter

DLL_top

DLL_transmitter Interface Signals:

Name Direction |Interface with |Description
clk input System clock
dllp_ack_nakbar input Rx_DLL Used to determine sending either ack/nak. ack/nak is a 2 byte
item. h’00 for ack .. h’10 for nak
dllp_scheduled input Rx_DLL Scheduled flag for a dllp, for the transmitter to send the DLLP
dlip_seq_num[5:0] input Rx_DLL 6 bit sequence number that should be included in the DLLP
lane_num input Tx_PHY 0 = one lane link, 1 = two lane link
link_up input Tx_PHY 0 = The link is not ready, 1 = The link is ready for normal operation
phy_throttle input Tx_PHY Handshake - To indicate if phy is not able to receive, DLL will not
send the DLLP
rev_dlip[15:0] input Rx_DLL Storage for a DLLP (2 bytes)
rcv_dllp_received input Rx_DLL To indicate if a DLLP is received by rx to extract its information.
rst input Reset signal
tl_boundary_info[2:0] input (Test_bench) 3 bit boundary info encoding for
PKT_IDLE = not sending anything
PKT_START = starting 16-bit word
PKT_IN = 16-bit word somewhere in the middle of the TLP
PKT_EN = ending 16-bit word
Or else, starting and ending of a single 16-bit word TLP
tl_data_in[15:0] input (Test_bench) Transaction Layer packet
dll_boundary_info [2:0] output Tx_PHY 3 bit boundary info encoding for
PKT_IDLE = not sending anything
PKT_START = starting 16-bit word
PKT_IN = 16-bit word somewhere in the middle of the TLP
PKT_EN = ending 16-bit word
Or else, starting and ending of a single 16-bit word TLP
dll_data_out[15:0] output Tx_PHY DLLP Packet
dll_ready output Tx_PHY DLLP packet ready to be sent out
dll_tlp_dllp_bar output Tx_PHY A flag indicating the byte is a tlp or a dlip: dlip:0 tlp:1
rb_depth[6:0] output Tx_PHY Retry buffer address pointer
tx_dllp_sending output Rx_DLL To indicate if tx_DLL will send the DLLP

Rx_DLL interface (DLL_receiver):

dll_downstream

clk_
Iane_num_
Iink_up_
rst_

rx_phy_boundary_info[2:0]

inst_DLL_receiver

phy_boundary_info[2:0]

phy_byte_input[15:0]

rx_phy_byte_input[15:0]

phy_tip_dllpbar

rx_phy_tlp_dllpbaL B]L}

tlp_ready__
tx_dllp_sending__

dll_boundary_info[2:0]

rx_dll_boundary_info[2:0] n/c

dll_throttle

rx_dll_throttle

dll_tlp_out[15:0]

rx_dll_tlp_out[15:0] n/c

| dllp_ack_nakbar
| dllp_scheduled
__dllp_seq_num[S:O]
__rcv_dllp[15:0]

rev_dllp_received

DLL_receiver

DLL_top

DLL_receiver Interface Signals:

Name Direction |Interface with Description
clk input —_ Clock
lane_num input Tx_PHY 0 = one lane link, 1 = two lane link
link_up input Tx_PHY 0 =The link is not ready, 1 = The link is ready for normal operation
phy_boundary_info[2:0] input Rx_PHY 3 bit boundary info encoding for
PKT_IDLE = not sending anything
PKT_START = starting 16-bit word
PKT_IN = 16-bit word somewhere in the middle of the packet
PKT_EN = ending 16-bit word
Or else, starting and ending of a single 16-bit word packet
phy_byte_input[15:0] input Rx_PHY Physical Layer packet
phy_tip_dlipbar Input Tx_PHY A flag indicating the byte is a tlp or a dlip: dlip:0 tlp:1
reset input —_ Reset signal
tlp_ready input Rx_PHY Ready handshake signal from the transaction layer
tx_dllp_sending input Rx_DLL To indicate if tx_DLL will send the DLLP
dll_boundary_info [2:0] output — 3 bit boundary info encoding for
PKT_IDLE = not sending anything
PKT_START = starting 16-bit word
PKT_IN = 16-bit word somewhere in the middle of the packet
PKT_EN = ending 16-bit word
Or else, starting and ending of a single 16-bit word packet
dll_throttle output Rx_PHY Handshake - To indicate that receiver is not able to receive, DLL will
not send the DLLP
dll_tlp_out[15:0] output DLLP Packet to transaction layer
dllp_ack_nakbar output Rx_DLL Used to determine sending either ack/nak. ack/nak is a 2 byte item.
h’00 for ack .. h’10 for nak
dllp_scheduled output Rx_DLL Scheduled flag for a dllp, for the transmitter to send the DLLP
dlip_seqg_num[5:0] output Rx_DLL 6 bit sequence number that should be included in the DLLP
rev_dilp[15:0] output N Storage for a DLLP (2 bytes), will be forward to the transmitter to
process
rcv_dllp_received output Rx_DLL To indicate if a DLLP is received by rx to extract its information.

Physical Layer (Tx_PHY, Rx_PHY):

This layer connects to the physical PCle link on one side and interfaces to the Data Link Layer (DLL) on
the other side. The transmitter physical layer (Tx_PHY) processes outbound packets before they get
transmitted to PCle physical link, and the receiver physical layer (Rx_PHY) processes inbound packets
received from the physical PCle link.

Tx_PHY Design:

Tx_PHY Buffer ’ ‘ SKP Ordered Set ‘ Idle Ordered Set { LTSSM J
v v \4 l
MUX
v
Byte Striping
I
v v
8b/10b encoder 8b/10b encoder
(BRAM) (BRAM)

Lane 0 Lane 1
Serializer Serializer

I |

* Tx_PHY_Buffer is for data striping - DLL will send data to PHY in parallel and PHY will gather it in this
buffer and will then further transmit it using byte striping (data is spread/striped across the available
lanes.. in this case lane_0 & lane_1)

* SKP Ordered Set (SOS) is a 4 symbols set (COM, SKP, SKP, SKP): Once transmission begins on the
link, SOS’s are transmitted at regular intervals (Depending on ppm difference between PCle upstream
port and downstream local clock frequencies... in this case local clocks are 10MHz & 9.8 MHz). SOS’s
are also scheduled to be transmitted after the end of a DLLP or TLP, any time when idle data is being
sent, or after a Training Sequence (TS1) or no data is being sent from LTSSM

* Idle Ordered Set is sent when Tx_PHY Buffer is empty or LTSSM has no data to send.

* MUX is select between transmitting DLLP/TLP from Tx_PHY Buffer, Idle Ordered Sets, Training
Sequences TS1/TS2 Ordered Sets, or SKP Ordered Sets.

* 8b/10b encoder is using BRAMs for 8b/10b mapping in this case.

* Lane Serializer is to transmit byte striped data on the 2 lanes.

* LTSSM (Link Training and Status Machine) is for the link up process between transmitter and receiver
physical layers by achieving bit/ symbol lock using, ensuring synchronization and reliability. The link

training process consists Detect, Polling, Configuration, and L0 states. The training sequences (TS1/
TS2) will be transmitted in Polling state to achieve bit/ symbol lock.

Tx_PHY Interface (phy_tx):

PHY_DSP
a
phy_tx
clk B o ck
clk10_tx clk10
dll_boundary(2:0] dll_boundary[2:0]
dil_pckt[15:0] dil_pckt[15:0]
dll_pckt_type dll_pckt_type Itssm_ready Itssm_ready
Itssm_D_Kbar 0 Itssm_D_Kbar_0 phy_lanes phy_lanes
Itssm_D_Kbar_1 Itssm_D_Kbar_1 phy_linkup phy_linkup
Itssm_lanes Itssm_lanes phy_throttle phy_throttle
Itssm_linkup Itssm_linkup phy_tx_bit_lane0 phy_tx_bit_lane0
Itssmfpckt,endi | phy_tx_bit_lane1 phy_tx_bit_lane1
Itssm,pcktﬁstart__
Itssm_pckt_0[7:0] Itssm_pckt_0[7:0]
Itssm_pckt_1(7:0] Itssm_pckt_1(7:0]
ltssm_valid |
I'St__ _____________________ r_st
pcie_tx_data_serializer
J
phy_top
Phy_tx Interface Signals:
Name Direction |Interface with Description
clk input — Local clock
clk10 input — 10x frequency of local clock
dll_boundary[2:0] input Tx_DLL 3 bit boundary info encoding for
PKT_IDLE = not sending anything
PKT_START = starting 16-bit word
PKT_IN = 16-bit word somewhere in the middle of the packet
PKT_EN = ending 16-bit word
Or else, starting and ending of a single 16-bit word packet
dll_pckt[15:0] input Tx_DLL 2 byte data from DLL; can be DLLP, TLP or IDLE
dll_pckt_type input Tx_DLL Type of packet being sent by DLL to PHY - DLLP / TLP
Itssm_D_Kbar_0 input LTSSM 1 bit signal to indicate data/control character
ltssm_D_Kbar_1 input LTSSM 1 bit signal to indicate data/control character
Itssm_lanes input LTSSM LTSSM indicates how many lanes are available
Itssm_linkup input LTSSM LTSSM indicates link is up for transmission
Itssm_pckt_end input LTSSM Flag for last 8 bit character of ordered set
Itssm_pckt_start input LTSSM Flag for first 8 bit character of ordered set
Itssm_pckt_0[7:0] input LTSSM 1 byte data from LTSSM
Itssm_pckt_1[7:0] input LTSSM 1 byte data from LTSSM
Itssm_valid input LTSSM 1 bit signal to indicate if LTSSM is sending valid data
rst input —_ Reset signal
Itssm_ready output LTSSM Indicate to LTSSM physical layer that SKP ordered sets are being
transmitted
phy_lanes output Tx_DLL, Rx_DLL [Indicate to DLL how many lanes are available for transmission
phy_linkup output Tx_DLL, Rx_DLL [Indicate to DLL that PHY layer is available for transmission
phy_throttle output Tx_DLL Indicate to DLL if PHY TX buffer is full or empty
phy_tx_bit_lane0 output Rx_PHY Serial transmission on lane 0
phy_tx_bit_lane1 output Rx_PHY Serial transmission on lane 1

Rx_PHY Design & Interface:

slow clock
Recovered clk frequency / 10

Clock

Recovered Clock Division Rx Local Clock
(10x Tx local clock frequency)
By 10
10-b ‘ ; l ‘}
-bit . . .
8-bit 8-bit 8-bit
_bi data
1bitdata | it Shitt Redister 10b/8b Decoder | %@ | Elastic Buffer | %% | Deskew FIFO | %2
9 (BRAM Based) (8 locations) (4 Locations)

phy_tx_bit

» 10-bit Shift Register is to shift in bits of data coming from Tx. Rx keeps checking the 10-bit symbol

contained in this shift register - if it is COM (bc in hex), symbol lock is declared.
(Note*: Bit lock is needed however to set the frequency and phase of the recovered clock as well, which needs a PLL, but in this case Tx clock is
carried over to Rx and so bit lock is always assumed to be achieved.)

« 10b/8b Decoder is using BRAMs for 10b/8b mapping in this case.

 Elastic Buffer is a two clock FIFO used to compensate the frequency and phase difference between
Rx local clock and recovered clock from Tx. Tx will schedule Skip Ordered Sets (SOS’s) regularly,
which is inserted into the data stream and is sent to Rx. Elastic Buffer will decide to either use these
SOS'’s to insert/remove dummy symbols based on whether it is about to run full/empty. This way, it
compensates symbol shifts accumulated in it due to frequency differences between write clock
(recovered clock f/10) and read clock (Rx local clk)

Note* 1: SOS’s = 1 COM [bc in hex] + 3 SKP [1c in hex])
Note* 2: Two clock FIFO pointers are gray coded and double flopped to avoid Clock Domain Crossing (CDC) issues!)

» De-skew FIFO is used to align data streams coming from Lane_0 and Lane_1 to the same Rx local
clock edge. This is because data streams on those lanes can arrive at Rx at different times due to
lane-to-lane skew.

« Clocking: 10-bit shift register is working under high frequency recovered clock (10x frequency of Tx
local clock). Decoder and write domain of Elastic Buffer are working under a divided-by-10 version of
this clock generating a clock with frequency very close to Rx local clock. Every cycle of the 10x
frequency clock, 1 bit of data gets shifted into the shift register. Every cycle of the slow clock, 10-bit
data gets decoded into 8b data.

Rx_PHY Interface:

PHY_DSP
8
phy_rx
el clididlocalll
clk_sys clk_sys boundary[2:0] boundary{2:0]
clk10_rx clk_w_x10a data_to_DLL[15:0] data_to_DLL[15:0]
clk_w_x10b lane0_data[7:0] lane0_data[7:0]
data_bit0 data_bit0 lane0_valid lane0_valid
data_bit1 data_bit1 lane1_data[7:0] lane1_data[7:0]
rstnasyn | lane1_valid lane1_valid
throttle throttle type_TLP type_TLP
wen [N
PHY_rx
NS J
phy_top
Phy_rx Interface Signals:
Name Direction |Interface Description
with
clk_r_local input — Local Rx clock
clk_sys input = System clock
clk_w_x10a input — Recovered clock from lane 0
clk w x10b input = Recovered clock from lane 1
data_bit0 input Tx_PHY Data bit put on lane 0 transmission line
data bit1 input Tx_PHY Data bit put on lane 1 transmission line
rstn_asyn input Low asynchronous reset signal
throttle input Rx_DLL Throttling signal given by DLL when Transaction Layer
cannot receive.
w_en input — Indidcates that there's valid transmission going on on
physical lines
boundary[2:0] output |Rx_DLL Boundary info for corresponding 2 byte data
data_to_DLL[15:0] output |[Rx_DLL Grouped 2 byte data sent to DLL
lane0_data [7:0] output |[LTSSM 1 byte data from deskew FIFO of lane 0, sent to LTSSM
lane0_valid output |[LTSSM validity of lane 0 data
lane1_data[7:0] output [LTSSM 1 byte data from deskew FIFO of lane 1, sent to LTSSM
lane1_valid output [LTSSM validity of lane 1 data
type_TLP output |Rx_DLL Indicate packet type of current packet to DLL

Rx_PHY design per lane:

phy_rx

inst_PHY_n¢ laned

T

o ck divider regl0]

o

RTL_REG_ASYNC

& ck divider reg1]

& cl divider reg[2]

A g
-0

RTL_REG_ASYNC

|
& ck divider_reg[3]
QR

o

RTL_REG_ASYNC

& data_in_shift_reg[0]
QR

c
e a
o

RTL_REG_ASYNC

|
& data_in_shift_reg[1]
aRr

Q

°Rn

RTL_REG_ASYNC

|
& data_in_shift reg(2]
R

{ o5

CE Q

o

T5_cbtained

FIFO_al not_empty
ks ocal

i sys |

< w x10 [

1 RTL_REG_ASYNC

_| 505 exiting SOS ahead |
15_obtained ckrocl
com_exiting csys
1 data[70) com_ahead fifo_not_empty deskew_fifo_not_empty
£ data[70) lane data[7.0]

|
a‘ :an_in_shiﬂ_reg[}] decoder

a D w datafo) |
€ ST L | OO ok control data e w_en
b = data in[9.0] data_out[7.0]
o

elastic_buffer
T resetn recener_eror_detected
RTL_REG_ASYNC vaiidin | \aid_out
| decoder_10b_8b
& data_in_shift_reg[4]
QAR

window_cot{2.0)

deskew_fifo

Q

°Rn

RTL_REG_ASYNC

|
& data_in_shift reg(s]
C(ZLR

¢ a
D

RTL_REG_ASYNC
|
& data_in_shift reg(6]
ar

(4
e a
7

s

RTL_REG_ASYNC

|
& data_in_shift reg(7]
ar

(=
—He¢ a
Mo

RTL_REG_ASYNC

|
n‘ data_in_shift_reg(8]
ar

c
Je a
databit | o

rstn_asyn |

RTL_REG_ASYNC
window_cot[2:0]

4 data_in_shift_reg(9]
QAR
L5
— ce Q
o

RTL_REG_ASYNC

PHY_nclane

PHY 1

phy_top

Rx_PHY Data Deserializer: Un-striping buffer used to group 2-byte data (1 byte from each lane) to DLL.

rr_uor

[E]
phy_rx
e inst_PHY_rx_lane0
FIFO_all_not_empty
clk_r_local clk_r_local
clk_sys clk_sys _| TS_obtained boundary[2:0]
clk_w_x10a clk_w_x10 _| deskew_fifo_not_empty _data,to,DLLH 5:0]
clk_w_x10b data_bit lane_data[7:0] lane0_data[7:0]
data_bit0 rstn_asyn inst_rx_buffer
w‘mdow_cnt[g:o]__ clk
PHY 1x lane lane_data0[7:0] boundary[2:0]
dala_bi&177 - lane_data1[7:0] data_to_DLL[15:0]
rstn_asyn resetn type_TLP
throttle throttle
valid_in
inst_PHY_rx_lane1 rx_buffer e
FIFO_all_not_empty }Y \ane1:data[7:0]
clk_r_local i | lanet_valid
clk_sys _| TS_obtained type_TLP
clk_w_x10 _| deskew_fifo_not_empty
data_bit lane_data[7:0]
rstn_asyn
window,cnt[g:o]__
PHY_rx_lane
PHY_rx
phy_top
LTSSM Interface & Signals:
) Name Tupy |Interface | Description
LTSSM_LINK_DSP_inst -
clk input Clock Input
rst input Reset for the State Machine
| link_up symb_in_valid_0 |input |Rx_PHY |Valid symbol in from physical Rx lane 0
| num_of lanes(1:0] symb_in_valid_1 |input |Rx_PHY |Valid symbol in from physical Rx lane 1
symb_in_0[7:0] input |Rx_PHY |Symbol in from physical Rx lane 0
clie |E° | order_set end 0 symb_in_1[7:0] input |Rx_PHY |Symbol in from physical Rx lane 1
et order set_end_1 symb_out_rdy_0 |input |Tx_PHY |Physical Rx is ready to consume symbol
- 1 out generated by LTSSM lane 0
symb_in_valid 0 | _ | ordersetstart0 |symb_out_rdy_1 |input |Tx_PHY |Physical Rx is ready to consume symbol
out generated by LTSSM lane 1
symb_in_valid_1 order_set_start_1 - ;
i — B link_up output | Tx_PHY |Link up status
symb_in 0[7:0] | __| symboutvalid 0 |num_of_lanes[1:0] |output | Tx_PHY [Number lanes that can be used by Data
_ _ link layer
ki 1L B symb_out valid_1 order_set_end_0 |output |Tx_PHY |Lane O order set end symbol
symb_outrdy 0 | __| symb_out 0[7:0] order_set_end_1 |output | Tx_PHY |Lane 1 order set end symbol
order_set_start_0 |output |Tx_PHY |Lane 0 order set start symbol
symb_out_rdy_1 symb_out_1[7:0]
- - order_set_start_1 |output |Tx_PHY |Lane 1 order set start symbol
__| symb_type 0 symb_out_valid_0 |output |Tx_PHY |Valid symbol in from physical Rx lane 0
symb_type.1 symb_out_valid_1 |output | Tx_PHY |Valid symbol in from physical Rx lane 1
-1 symb_out_0[7:0] |output |[Tx_PHY |Symbol out to physical Tx lane 0
LTSSM_LINK_DSP symb_out_1[7:0] |output | Tx_PHY |[Symbol out to physical Tx lane 1
symb_type_0 output | Tx_PHY | Data(1)/control(0) type of symbol
symb_type_1 output [Tx_PHY | Data(1)/control(0) type of symbol

Simulation waveforms:

1. Tx_DLL Top:

clk
st

> ¥tl_boundary_info[2:0]

> #tl_data_in[15:0]

dll_ready

> ¥ dll_data_out[15:0]
> ®acknak_seq_num[5:0]
> Wiackd_seq[5:0]

> Wireplay_timer_count(7:0] 2 | s 26 I 27 | 28 00 | 01 03 [04 | 05

A S ooz | |

* First clock DLL sees tI_boundary_info[2:0] == 3’b001 / 3’b1xx, it will reset dll_ready to 1’b0 and
asks Transaction Layer to hold the data. In the meantime, Data Link Layer will transmit
NEXT_TRANSMIT_SEQ first to Physical Layer, and indicates this is the first part of the TLP
(dll_boundary_info == 3’'b001). Also, NEXT_TRANSMIT_SEQ will be stored in Replay Buffer as a
part of the TLP. At the end of this clock, NEXT_TRANSMIT_SEQ <= NEXT_TRANSMIT_SEQ + 1.

> Wi next_transmit_seq_num[5:0]

* In the next few clocks, DLL Transmitter sets dll_ready to 1’b1 and starts receiving the TLP from
Transaction Layer (16 bits per clock). DLLPs will always be consumed in one clock. Transmitter
forwards the AckNak_SEQ information in the DLLP to Replay Buffer, and update its own AckD_SEQ
which stores the last acknowledged sequence number. Transmitter also gives the Ack/Nak
information to Replay Buffer.

2. Tx_PHY Top:

clk
#clk10

s ot
e
dil_boundary[2:0] I

@ tssm_linkup

& |tssm_pckt_0[7:0]

Mitssm_pckt_1(7.0]

tssm_lanes

W ltssm_D_Kbar 0

Itssm_D_Kbar_1

H tssm_valid

 Itssm_pckt_start

ltssm_pekt_end

¥ phy_linkup

phy_throttle

phy_lanes

W tssm_readly

phy_tx_bit_lane0

phy_tx_bit_lane1

I "EEERENEN
| == [[[0
. NEEESENES

. LTSSM TS1/TS2 until link is up.

2. Tx_PHY Byte_Striping (lane 0, Lane 1):

a2 ﬂjjﬂﬂﬂﬂﬂg_l]

> Mdil pkt[15:0]

7,950.000 ns

phy_tx_bit_lane0

phy_tx_bit_lane1
> Mphy_mux_to_8b10b_data[15:0;

> W datain_tx_unencoded[7:0]
> M datain_tx_unencoded[7:0]

Source

18 clk_w_slow_en

es [Objects

data_bit
W data_in_shift[9:0]
4 symbol_lock reg

8 symbol_lock_detected

ok e Er=sEaEa 30 S A B 0 1 O B K 8 N N N Y

" datain_tx_unencoded[7:0] 1110111 0111100 /10b enc 1 | 01001010
™ dataout_tx_encoded[9:0] 00010101 1010101010 [0001010111
Vo Ve VeV e o o Ve Ve Vo Vo Vo o V v Y 0 T 7 7 v 7 —
'Hda(ajn[g:o] ‘, ou) 101C (DlOJ 1010l) 110 (111J o110l) 001C ‘DG {101 ‘} 1110):111L “‘DllJ ‘} 1010) 0100 !101,\ } o100l }‘DDIL);UDD, | 1000 \,: u]
) } A | A } J A J

> Mdata_out[7:0] 10111100 01001010 10111100 [t1110111

IIIIIIIIIIIII]

3. Rx_PHY 10-bit Shift Registering:

elastic_buffer removing.wcfg*

Q W @ e ¥ o I o= 24

Sources Scope

3,780.000 ns 3,800.000 ns 3,840.000 ns

clk_w_x10

0101111100 0010111110 0001011111 0000101111
4 symbol_lock_reg
18 symbol_lock_detected -

> Wclk_divider[3:0]

Protocol Instances Objects

» 10-bit shift register is working under high frequency recovered clock (10x Tx-local clock frequency,
clk_w_x10).

» Every clk_w_x10 cycle, data_in_shift gets shifted by 1 bit.

* A COM symbol shows up in data_in_shift.

* symbol_lock_detected goes high.

* symbol_lock_reg latches symbol_lock_detected and stays high.

» clk_divider gets activated by symbol_lock_reg and keeps counting.

» clk_w_slow is generated as a divided by 10 version of clk_w_x10.

4. Rx_PHY Clocking:

J 2TV DTV I IUIUO ~ UG = ST~ P st

Protocol

¢ elastic_buffer_removing.wcfg*

18 clk_w_slow_en
data_bit
W data_in_shift[9:0]

4 symbol_lock reg
18 symbol_lock_detected
e nmnnnnnmnn

10-bit shift register is working under high frequency recovered clock (10x local clock frequency,
clk_w_x10)

Decoder and write domain of EB work under a divided-by-10 version of the high frequency
recovered clock (clk_w_slow) (very close to local clock frequency of RX)

Every clk_w_x10 cycle, data_in_shift gets shifted by 1 bit. Every clk_w_slow cycle, input data to
decoder (contents in data_in_shift) gets updated with a whole new 10-bit symbol.

5. Rx_PHY COM Decoding:

Sources Scope

Protocol Instances |Objects

elastic_buffer_removing.wcfg*

clk_w_x10

clk_r_local

il show B

8 clk_w_slow_en

& data_bit |
W data_in_shift[9:0] 1 11100

4 symbol_lock_reg
8 symbol_lock_detected

uua1011111 0000101111 [1000010111 0100001011 1010000101 0101000010 1010100001 |1101010000 111D101000 0111010100 0011

> Wclk_divider{3:0]

> W data_out[7:0] 10111100

6. Rx_PHY Elastic Buffer:

* As all Ordered Sets start with COM symbol, we can only tell whether it’s an SOS after we know
whether the 2nd symbol following COM is SKP symbol.

* The decision to insert/remove SKP(s) can only be made after the first SKP

» com_detected and skp_detected, along with the FIFO depth (fillcount_w) help to decide whether to
insert or remove SKPs.

* Insertion is done by writing multiple entries in the same clock, an removal is done by stop
incrementing write pointers and not writing any entry for current clock.

* Insertion/removal decision is made in write domain, so actually we

l. -Insert 1 SKP ordered set:

50,000.000 ns 50,200.000 ns 50,400.000 ns 50,600.000 ns 50,800.000 ns 51}

clk_w_slow
8 com_detected
® fillcount_w[3:0]
> Mw_ptr[3:0]
> W _ptr[3:0]
> ®r_ptr_b_ss[3:0]
4 symbol_lock_reg
> Mw_data[7:0]
> Mr_data[7:0]
@ empty
v Wie_buffer[0:7][7:0]
> W [0][7:0]
> W[1](7:0]
> W[2[7:0]
> W [3][7:0]
> W4][7:0]
> WA[5][7:0]
> W[6][7:0]
> W[7][7:0]

4a

Il. Insert 2 SKP ordered sets:

67,200.000 ns 67,400.000 ns 67,600.000 ns 67,800.000 ns 68,000.000 ns
clk_w_slow
8 com_detected
@ skp_detected
> Mfillcount_w[3:0]
> Ww_ptr[3:0]
> Wy ptr(3:0]
> B ptr_b_ss[3:0]

- N A N W O = o

4 symbol_lock_reg
> Mw_data[7:0]
> Mr_data[7:0]
8 empty
v We_buffer[0:7][7:0]
> W[0][7:0]
> WA[1][7:0]
> W2][7:0]
> WA[3][7:0]
> WA][7:0]
> WA[5][7:0]

bl (6][7:0]
> M[7][7:0]

Ill. Normal Write:

Source

37,800.000 ns 38,000.000 ns « 38,400.000 ns 38,600.000 ns
pcie_sim_tb/ins...ffer/clk_w_sld
@ /pcie_sim_tb/in.../com_detectf 1
4 /pcie_sim_tb/in...r/skp_detecte

R /pcie_sim_tb/inst..fillcount_w|

> W/pcie_sim_tb/ins.

> W/pcie 1_t

> M /pcie_sim_tb/i

> Mw_data[7:0]

v We_buffer[0:7][7:0]
> W [0][7:0]

Protocol Instances |Objects

> W[1][7:0]
> W2)[7:0]
3][7:0]

> W4][7:0]
W[5]7:0]
W [6]7:0]
> W[7][7:0]

12,600.000 ns 12,800.000 13,000.000 ns 13,200.000 ns 13,400.000 ns

%' /pcie_sim_tb/inst..fillcount_wl[:
W' /pcie_sim_tb/ins...ffer/w_ptr[3:
> W /pcie_sim_tb/inst...uffer/r_ptr|

B w_data[7:0]
s Wle_buffer[0:7][7:0]

> W[0][7:0]

W[1][7:0]

W (2][7:0]

W (3][7:0]

> MA[4][7:0]

W[5][7:0]

> WA[6][7:0]

W [7](7:0]

/pcie_sim_tb/ins...ffer/clk_w_sld
¥ /pcie_sim_tb/in...r/com_detect]

18 /pcie_sim_tb/in.../skp_detecte

> Mw_data[7:0]

S e
v Wie_buffer[0:7][7:0] 3 | be,4a,4a0 | be,£7,4a0 |

A
> W[0][7:0]
> W1[7:0]
W [2]7:0]
> W[3)[7:0]
> W4]7:0]
W (5]7:0]
> W [6][7:0]
> M7][7:0]

Cell Properties | Netlist

7. Rx_PHY De-skew FIFO:

> Bw_data[7:0]

> Mw_ptr[2:0]

> W ifo[0:3](7:0]
4 symbol_lock_reg
SOS_ahead
& com_ahead

> ®fillcount[2:0]

> BMw_data[7:0]

> Ww_ptr[2:0]

> Wifo[0:3][7:0]
d symbol_lock_reg
SOS_ahead
com_ahead
d deskew_begin
#r_en_lane0

> BMr_data[7:0] _Lane0

Hr_en_lanel

> Mr_data[7:0] _Lane1

 In order for each lane deskew FIFO to safely begin to latch incoming symbols without worrying that
they might belong to different groups, we count for 4 strikes after the last symbol lock is seen
and then enable each lane deskew FIFO to accept the next COM symbol (bc) onwards.

PCEe Top Schematic:

Tools: Xilinx Vivado

FPGA Board: Nexys A7
https://digilent.com/shop/nexys-a7-fpga-trainer-board-
recommended-for-ece-curriculum/

Synthesis (RTL to Circuit Netlist):
Synthesis Report and FPGA Cell Usage:

Start Writing Synthesis Report

Report BlackBoxes:

| |BlackBox name |Instances

Report Cell Usage:

| |Cell |Count |
1 BUFG 16
2 BUFGCTRL 4
3 CARRY4 96
4 LUT1 86
5 LUT2 461
6 LUT3 593
7 LUT4 572
8 LUT5 767
9 LUT6 2017
10 MMCME2_ADV 2
11 MUXF7 271
12 MUXF8 57
13 RAM32M 8
14 RAMB18E1 4
15 RAMB18E1_1 3
16 RAMB18E1_2 4
17 RAMB18E1_3 4
18 RAMB18E1_4 4
19 RAMB18E1_5 4
20 FDCE 1141
21 FDPE 125
22 FDRE 2144
23 FDSE 31
24 IBUF 65
25 IBUFG 1
26 0BUF 132

Report Instance Areas:

| |Instance |[Module |Cells |
1 top 8612
2 inst_clk_wiz_0 clk_wiz_0 5
3 inst clk_wiz_0@_clk_wiz 5
4 inst_clk_wiz_1 clk_wiz_1 5
5 inst clk_wiz_1_clk_wiz 5
6 bram@ bram 56
7 braml bram_0 12
8 bram2 bram_1 4
9 bram3 bram_2 2
10 debouncer_i0 ee201_debouncer 69
11 inst_pcie pcie 7732
12 LTSSM_LINK_DSP_inst LTSSM_LINK_DSP 850
13 LTSSM_LANE_0 LTSSM_LANE_DSP 400
14 LTSSM_LANE_1 LTSSM_LANE_DSP__parameterized@ 385
15 LTSSM_LINK_USP_inst LTSSM_LINK_USP 869
16 LTSSM_LANE_0 LTSSM_LANE_USP 425
17 LTSSM_LANE_1 LTSSM_LANE_USP__parameterized@ 381
18 PHY_DSP phy_top 2439
19 phy_rx PHY_rx_14 1240
20 phy_tx pcie_tx_data_serializer_15 1199
21 lane@_8b10b pcie_phy_8b1l@b_16 81
22 lanel_8b10b pcie_phy_8bl@b_17 312
23 PHY_USP phy_top_7 2701
24 phy_rx PHY_rx 1509
25 phy_tx pcie_tx_data_serializer 1192
26 lane@_8b10b pcie_phy_8b10b 79
27 lanel_8b10b pcie_phy_8bl@b_13 312
28 d11_downstream DLL_top 598
29 inst_DLL_receiver DLL_receiver_9 103
30 inst_transmitter DLL_transmitter_10 495
31 inst_replay_buffer |replay_buffer_11 451

32 buffer_memory
33 dll_upstream

34 inst_DLL_receiver
35 inst_dp_bram_ft
36 inst_transmitter
37 inst_replay_buffer
38 buffer_memory
39 receive_file_i0

40 input_fifo

41 rst_gen_i@

42 reset_bridge_clk_i0
43 send_file_i0

44 input_fifo

45 uart_rx_i@0

46 data_fifo_i0@

47 meta_harden_rxd_i0
48 uart_baud_gen_rx_i0
49 uart_rx_ctl_i@

50 uart_tx_i0

51 data_fifo_i0@

52 uart_baud_gen_tx_i0

53 uart_tx_ctl_ie0

dp_bram_ft_12
DLL_top_8
DLL_receiver
dp_bram_2en_ft
DLL_transmitter
replay_buffer
dp_bram_ft
receive_file
data_fifo_oneclk_6
rst_gen
reset_bridge
send_file
data_fifo_oneclk_5
uart_rx
data_fifo_oneclk_3
meta_harden
uart_baud_gen_4
uart_rx_ctl
uart_tx
data_fifo_oneclk
uart_baud_gen

uart_tx_ctl

214
249
166
44
83
59
34
109
58
10
10
75
56
106
39
2
14
50
75
25
14

36

Finished Writing Synthesis Report :
; gain = 684.238

Time (s): cpu = 00:01:24 ; elapsed = 00:01:55 .

Place and Route (PnR):

Utilization report:
Utilization Design Information

Table of Contents

1. Slice Logic

1.1 Summary of Registers by Type
2. Slice Logic Distribution
3. Memory

4. DSP

5. I0 and GT Specific
6. Clocking

7. Specific Feature
8. Primitives

9. Black Boxes

10. Instantiated Netlists

1. Slice Logic

| Site Type | Used | Fixed | Available | Util%
Slice LUTs 3883 0 63400 6.12
LUT as Logic 3851 0 63400 6.07
LUT as Memory 32 0 19000 0.17
LUT as Distributed RAM 32 0
LUT as Shift Register 0 0
Slice Registers 3441 0 126800 2.71
Register as Flip Flop 3441 0 126800 2.71
Register as Latch 0 0 126800 0.00
F7 Muxes 271 0 31700 0.85
F8 Muxes 57 0 15850 0.36
1.1 Summary of Registers by Type
Total	Clock Enable	Synchronous	Asynchronous
@		-	-
0	- - Set		
0	_ - Reset		
@		Set	-
0	_ Reset	-	
©	Yes	- =	
125	Yes	-	Set
1141	Yes	- Reset	

Memory (MB): peak = 974.047

31 | Yes |

Set |
Reset |

2144 | Yes |

2. Slice Logic Distribution
| Site Type Used | Fixed | Available | Util%s
Slice 1728 0 15850 | 10.90
SLICEL 1170 0
SLICEM 558 0
LUT as Logic 3851 0 63400 6.07
using 05 output only 0
using 06 output only 3213
using 05 and 06 638
LUT as Memory 32 0 19000 0.17
LUT as Distributed RAM 32 0
using 05 output only 0
using 06 output only 0
using 05 and 06 32
LUT as Shift Register (/] 0
LUT Flip Flop Pairs 1331 0 63400 2.10
fully used LUT-FF pairs 228
LUT-FF pairs with one unused LUT output 1030
LUT-FF pairs with one unused Flip Flop 1068
Unique Control Sets 325
* Note: Review the Control Sets Report for more information regarding control sets.
3. Memory
| Site Type | Used | Fixed | Available | Util% |
| Block RAM Tile | 11.5 | 0 | 135 | 8.52 |
| RAMB36/FIF0x* | 0 | 0 | 135 | 0.00 |
| RAMB18 | 23 | 0 | 270 | 8.52 |
| RAMB18E1 only | 23 | [| |

+

4. DSP

| Site Type | Used | Fixed | Available | Utils |

| DSPs | 0 | 0 | 240 | 0.00 |

5. I0 and GT Specific

| Site Type | Used | Fixed | Available | Util%s |
Bonded IOB 29 29 210 | 13.81

IOB Master Pads 13
IOB Slave Pads 16

Bonded IPADs 0 0 2 0.00
PHY_CONTROL 0 0 6 0.00
PHASER_REF 0 0 6 0.00
OUT_FIFO 0 0 24 0.00
IN_FIFO 0 0 24 0.00
IDELAYCTRL 0 0 6 0.00
IBUFDS 0 0 202 0.00
PHASER_OUT/PHASER_OUT_PHY 0 0 24 0.00
PHASER_IN/PHASER_IN_PHY 0 0 24 0.00
IDELAYE2/IDELAYE2_FINEDELAY 0 0 300 0.00
ILOGIC 0 0 210 0.00
0LOGIC 0 0 210 0.00

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only one FIFO36E1l
or one FIFO18El. However, if a FIFO18El occupies a Block RAM Tile, that tile can still accommodate a RAMB18E1l

6. Clocking
| Site Type | Used | Fixed | Available | Utils |
| BUFGCTRL | 10 | 0 | 32 | 31.25 |
| BUFIO | 0 | 0 | 24 | 0.00 |
| MMCME2_ADV | 2 | 0 | 6 | 33.33 |
| PLLE2_ADV | 0 | 0 | 6| 0.00 |
| BUFMRCE | 0 | 0 | 12 | 0.00 |
| BUFHCE | 0 | 0 | 9% | 0.00 |
| BUFR | 0 | 0 | 24 | 0.00 |
7. Specific Feature
| Site Type | Used | Fixed | Available | Util%s |
| BSCANE2 | 0 | 0 | 4] 0.00 |
| CAPTUREE2 | 0 | 0 | 1| 0.00 |
| DNA_PORT | 0 | 0 | 1| 0.00 |
| EFUSE_USR | 0 | 0 | 1| 0.00 |
| FRAME_ECCE2 | 0 | 0 | 1| 0.00 |
| ICAPE2 | 0 | 0 | 2| 0.00 |
| PCIE_2_1 | 0 | 0 | 1| 0.00 |
| STARTUPE2 | 0 | 0 | 1| 0.00 |
| XADC | 0 | 0 | 1] 0.00 |
8. Primitives
| Ref Name | Used | Functional Category |

FDRE 2144 Flop & Latch

LUT6 2005 LUT

FDCE 1141 Flop & Latch

LUT5 774 LUT

LUT3 585 LUT

LUT4 575 LUT

LUT2 468 LUT

MUXF7 271 MuxFx

FDPE 125 Flop & Latch

CARRY4 96 CarrylLogic

LUT1 82 LUT

MUXF8 57 MuxFx

RAMD32 48 Distributed Memory

FDSE 31 Flop & Latch

OBUF 25 I0

RAMB18E1 23 Block Memory

RAMS32 16 Distributed Memory

BUFG 6 Clock

IBUF 4 I0

BUFGCTRL 4 Clock

MMCME2_ADV 2 Clock

+ +

9. Black Boxe

S

10.

Instantiated Netlists

" s

| Ref Name | Used |

—

+

Implementation Design:
This shows the physical layout of the FPGA and where the different parts of the design are mapped to.

|

Input pads where signals
are coming into the design

LUT’s, BRAM’s... etc|

Zooming in for a closer view (input and output pads):

BRAM'’s and LUT’s in the design:

Timing Report:

Design Timing Summary

Setup Hold Pulse Width
Worst Negative Slack (WNS): 2.353 ns Worst Hold Slack (WHS): 0.072 ns Worst Pulse Width Slack (WPWS): 3.000 ns
Total Negative Slack (TNS): ~ 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 7319 Total Number of Endpoints: 7319 Total Number of Endpoints: 357

All user specified timing constraints are met.

Power Report:

Power
‘
o = £ C W ' Summary
settings Power analysis from Implemented netlist. Activity On-Chip Power
Summary (0.294 W, Margin: N/A) derived from con'stralnts files, simulation files or Dynarmic: 0195 W (66%)
Power Supply vectorless analysis.
e ; g Clocks: 0.009W (5%
Utilization Details Total On-Chip Power: 0.294 W
9 Signals: ~ 0.007 W
Design Power Budget: Not Specified e g
. Logic: 0.006 W
Power Budget Margin: N/A
: BRAM: 0.010W
Junction Temperature: 26.3°C
) B VMMCM: 0158 W)
Thermal Margin: 58.7°C (12.7 W)
. 1/0: 0.004W (2%)
Effective QJA: 4.6°C/W R
Power supplied to off-chip devices: 0 W Device Static: 0.098 W (34%)
Confidence level: Medium
Launch Po straint Advisor to find and fix

invalid switching activity

Test-bench output:
launch_simulation: Time (s): cpu = 00:00:08 ; elapsed = 00:00:16 . Memory (MB): peak = 2428.391 ; gain = 0.000
run 200 us

At 159445000 (ns): TLP Packet sent Downstream (0210)
At 159645000 (ns): TLP Packet sent Downstream (0000)
At 159745000 (ns): TLP Packet sent Downstream (1111)
At 159845000 (ns): TLP Packet sent Downstream (2222)
At 159945000 (ns): TLP Packet sent Downstream (3333)
At 160045000 (ns): TLP Packet sent Downstream (4444)
At 160145000 (ns): TLP Packet sent Downstream (5555)
At 160245000 (ns): TLP Packet sent Downstream (6666)
At 160345000 (ns): TLP Packet sent Downstream (7777)
At 160445000 (ns): TLP Packet sent Downstream (8888)
At 160545000 (ns): TLP Packet sent Downstream (9999)
At 160645000 (ns): TLP Packet sent Downstream (aaaa)
At 160745000 (ns): TLP Packet sent Downstream (bbbb)
At 160845000 (ns): TLP Packet sent Downstream (cccc)
At 160945000 (ns): TLP Packet sent Downstream (dddd)
At 161045000 (ns): TLP Packet sent Downstream (eeee)
At 161102346 (ns): TLP Packet received Upstream (0210)
At 161145000 (ns): TLP Packet sent Downstream (ffff)
At 161204387 (ns): TLP Packet received Upstream (0000)
At 161306428 (ns): TLP Packet received Upstream (1111)
At 161345000 (ns): TLP Packet sent Downstream (0210)
At 161408469 (ns): TLP Packet received Upstream (2222)
At 161510510 (ns): TLP Packet received Upstream (3333)
At 161545000 (ns): TLP Packet sent Downstream (1f1f)
At 161612551 (ns): TLP Packet received Upstream (4444)
At 161645000 (ns): TLP Packet sent Downstream (lala)
At 161714591 (ns): TLP Packet received Upstream (5555)
At 161745000 (ns): TLP Packet sent Downstream (0000)
At 161816632 (ns): TLP Packet received Upstream (6666)
At 161845000 (ns): TLP Packet sent Downstream (1111)
At 161918673 (ns): TLP Packet received Upstream (7777)
At 161945000 (ns): TLP Packet sent Downstream (2222)
At 162020714 (ns): TLP Packet received Upstream (8888)
At 162045000 (ns): TLP Packet sent Downstream (3333)
At 162122755 (ns): TLP Packet received Upstream (9999)
At 162145000 (ns): TLP Packet sent Downstream (4444)
At 162224795 (ns): TLP Packet received Upstream (aaaa)
At 162245000 (ns): TLP Packet sent Downstream (5555)
At 162326836 (ns): TLP Packet received Upstream (bbbb)
At 162345000 (ns): TLP Packet sent Downstream (6666)
At 162428877 (ns): TLP Packet received Upstream (cccc)
At 162445000 (ns): TLP Packet sent Downstream (7777)
At 162530918 (ns): TLP Packet received Upstream (dddd)
At 162545000 (ns): TLP Packet sent Downstream (8888)
At 162632959 (ns): TLP Packet received Upstream (eeee)
At 162645000 (ns): TLP Packet sent Downstream (9999)
At 162734999 (ns): TLP Packet received Upstream (ffff)
At 162745000 (ns): TLP Packet sent Downstream (aaaa)
At 162845000 (ns): TLP Packet sent Downstream (bbbb)
At 162945000 (ns): TLP Packet sent Downstream (cccc)
At 163041122 (ns): TLP Packet received Upstream (0210)
At 163045000 (ns): TLP Packet sent Downstream (dddd)
At 163143163 (ns): TLP Packet received Upstream (1f1f)
At 163245000 (ns): TLP Packet sent Downstream (0210)
At 163245204 (ns): TLP Packet received Upstream (1ala)
At 163347244 (ns): TLP Packet received Upstream (0000)
At 163445000 (ns): TLP Packet sent Downstream (eeee)
At 163449285 (ns): TLP Packet received Upstream (1111)
At 163545000 (ns): TLP Packet sent Downstream (ffff)
At 163551326 (ns): TLP Packet received Upstream (2222)
At 163645000 (ns): TLP Packet sent Downstream (1f1f)
At 163653367 (ns): TLP Packet received Upstream (3333)
At 163745000 (ns): TLP Packet sent Downstream (lala)
At 163755408 (ns): TLP Packet received Upstream (4444)
At 163845000 (ns): TLP Packet sent Downstream (0000)
At 163857448 (ns): TLP Packet received Upstream (5555)
At 163945000 (ns): TLP Packet sent Downstream (1111)
At 163959489 (ns): TLP Packet received Upstream (6666)
At 164045000 (ns): TLP Packet sent Downstream (2222)
At 164061530 (ns): TLP Packet received Upstream (7777)
At 164145000 (ns): TLP Packet sent Downstream (3333)
At 164163571 (ns): TLP Packet received Upstream (8888)
At 164245000 (ns): TLP Packet sent Downstream (4444)
At 164265612 (ns): TLP Packet received Upstream (9999)
At 164345000 (ns): TLP Packet sent Downstream (5555)
At 164367653 (ns): TLP Packet received Upstream (aaaa)
At 164445000 (ns): TLP Packet sent Downstream (6666)

At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At

164469693
164545000
164571734
164645000
164673775
164745000
164845000
164945000
164979897
165081938
165145000
165183979
165286020
165345000
165388061
165445000
165490102
165545000
165592142
165645000
165694183
165745000
165796224
165845000
165898265
165945000
166000306
166045000
166102346
166145000
166204387
166245000
166306428
166345000
166408469
166445000
166510510
166545000
166612551
166645000
166745000
166845000
166918673
167020714
167045000
167122755
167224795
167245000
167326836
167345000
167428877
167445000
167530918
167545000
167632959
167645000
167734999
167745000
167837040
167845000
167939081
167945000
168041122
168143163
168145000
168245204
168345000
168347244
168445000
168449285
168545000
168551326
168645000
168745000
168845000
168945000
169045000
169145000
169163571
169245000
169265612

ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
s): TLP

Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet

received Upstream (bbbb)
sent Downstream (7777)
received Upstream (cccc)
sent Downstream (8888)
received Upstream (dddd)
sent Downstream (9999)
sent Downstream (aaaa)
sent Downstream (bbbb)
received Upstream (0210)
received Upstream (eeee)
sent Downstream (0210)
received Upstream (ffff)
received Upstream (1f1f)
sent Downstream (cccc)
received Upstream (lala)
sent Downstream (dddd)
received Upstream (0000)
sent Downstream (eeee)
received Upstream (1111)
sent Downstream (ffff)
received Upstream (2222)
sent Downstream (1f1f)
received Upstream (3333)
sent Downstream (lala)
received Upstream (4444)
sent Downstream (0000)
received Upstream (5555)
sent Downstream (1111)
received Upstream (6666)
sent Downstream (2222)
received Upstream (7777)
sent Downstream (3333)
received Upstream (8888)
sent Downstream (4444)
received Upstream (9999)
sent Downstream (5555)
received Upstream (aaaa)
sent Downstream (6666)
received Upstream (bbbb)
sent Downstream (7777)
sent Downstream (8888)
sent Downstream (9999)
received Upstream (0210)
received Upstream (cccc)
sent Downstream (0208)
received Upstream (dddd)
received Upstream (eeee)
sent Downstream (aaaa)
received Upstream (ffff)
sent Downstream (bbbb)
received Upstream (1f1f)
sent Downstream (cccc)
received Upstream (lala)
sent Downstream (dddd)
received Upstream (0000)
sent Downstream (eeee)
received Upstream (1111)
sent Downstream (ffff)
received Upstream (2222)
sent Downstream (1f1f)
received Upstream (3333)
sent Downstream (lala)
received Upstream (4444)
received Upstream (5555)
sent Downstream (0310)
received Upstream (6666)
sent Downstream (0000)
received Upstream (7777)
sent Downstream (0001)
received Upstream (8888)
sent Downstream (0002)
received Upstream (9999)
sent Downstream (0003)
sent Downstream (0004)
sent Downstream (0005)
sent Downstream (0006)
sent Downstream (0007)
sent Downstream (0008)
received Upstream (0208)
sent Downstream (0009)
received Upstream (aaaa)

At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At

169345000
169367653
169445000
169469693
169545000
169571734
169645000
169673775
169745000
169775816
169845000
169877857
169979897
170045000
170245000
170345000
170445000
170545000
170645000
170745000
170845000
170945000
171045000
171145000
171245000
171345000
171445000
171545000
171645000
171745000
171945000
174163571
174265612
174367653
174469693
174571734
174673775
174775816
174877857
174979897
175081938
175183979
175286020
175388061
175490102
175592142
175694183
175796224
175945000
176045000
176102346
176145000
176204387
176245000
176306428
176345000
176408469
176445000
176510510
176545000
176612551
176645000
176714591
176745000
176816632
176845000
176918673
176945000
177020714
177045000
177122755
177145000
177224795
177245000
177326836
177345000
177428877
177445000
177530918
177632959
177645000

ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
s): TLP

Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet

sent Downstream (000a)
received Upstream (bbbb)
sent Downstream (000b)
received Upstream (cccc)
sent Downstream (000c)
received Upstream (dddd)
sent Downstream (000d)
received Upstream (eeee)
sent Downstream (000e)
received Upstream (ffff)
sent Downstream (000f)
received Upstream (1f1f)
received Upstream (lala)
sent Downstream (0310)
sent Downstream (001f)
sent Downstream (001b)
sent Downstream (0000)
sent Downstream (0001)
sent Downstream (0002)
sent Downstream (0003)
sent Downstream (0004)
sent Downstream (0005)
sent Downstream (0006)
sent Downstream (0007)
sent Downstream (0008)
sent Downstream (0009)
sent Downstream (000a)
sent Downstream (000b)
sent Downstream (000c)
sent Downstream (000d)
sent Downstream (0310)
received Upstream (0310)
received Upstream (0000)
received Upstream (0001)
received Upstream (0002)
received Upstream (0003)
received Upstream (0004)
received Upstream (0005)
received Upstream (0006)
received Upstream (0007)
received Upstream (0008)
received Upstream (0009)
received Upstream (000a)
received Upstream (000b)
received Upstream (000c)
received Upstream (000d)
received Upstream (000e)
received Upstream (000f)
sent Downstream (000e)
sent Downstream (000f)
received Upstream (0310)
sent Downstream (001f)
received Upstream (001f)
sent Downstream (001b)
received Upstream (001b)
sent Downstream (0000)
received Upstream (0000)
sent Downstream (0001)
received Upstream (0001)
sent Downstream (0002)
received Upstream (0002)
sent Downstream (0003)
received Upstream (0003)
sent Downstream (0004)
received Upstream (0004)
sent Downstream (0005)
received Upstream (0005)
sent Downstream (0006)
received Upstream (0006)
sent Downstream (0007)
received Upstream (0007)
sent Downstream (0008)
received Upstream (0008)
sent Downstream (0009)
received Upstream (0009)
sent Downstream (000a)
received Upstream (000a)
sent Downstream (000b)
received Upstream (000b)
received Upstream (000c)
sent Downstream (0310)

At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At

177734999
177845000
177945000
178045000
178145000
178245000
178245204
178345000
178347244
178445000
178449285
178545000
178551326
178645000
178653367
178745000
178755408
178845000
178857448
178945000
178959489
179045000
179061530
179145000
179163571
179245000
179265612
179345000
179367653
179469693
179545000
179571734
179673775
179745000
179775816
179845000
179877857
179945000
180045000
180145000
180183979
180245000
180286020
180345000
180388061
180445000
180490102
180592142
180645000
180694183
180745000
180796224
180898265
180945000
181000306
181045000
181102346
181145000
181204387
181245000
181306428
181345000
181408469
181445000
181510510
181545000
181612551
181645000
181714591
181745000
181816632
181845000
181945000
182045000
182122755
182145000
182224795
182245000
182326836
182345000
182428877

ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
ns): TLP
s): TLP

Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet
Packet

received Upstream (000d)
sent Downstream (000c)
sent Downstream (000d)
sent Downstream (000e)
sent Downstream (000f)
sent Downstream (001f)
received Upstream (0310)
sent Downstream (001b)
received Upstream (000e)
sent Downstream (0000)
received Upstream (000f)
sent Downstream (0001)
received Upstream (001f)
sent Downstream (0002)
received Upstream (001b)
sent Downstream (0003)
received Upstream (0000)
sent Downstream (0004)
received Upstream (0001)
sent Downstream (0005)
received Upstream (0002)
sent Downstream (0006)
received Upstream (0003)
sent Downstream (0007)
received Upstream (0004)
sent Downstream (0008)
received Upstream (0005)
sent Downstream (0009)
received Upstream (0006)
received Upstream (0007)
sent Downstream (0308)
received Upstream (0008)
received Upstream (0009)
sent Downstream (000a)
received Upstream (000a)
sent Downstream (000b)
received Upstream (000b)
sent Downstream (000c)
sent Downstream (000d)
sent Downstream (000e)
received Upstream (0310)
sent Downstream (000f)
received Upstream (000c)
sent Downstream (001f)
received Upstream (000d)
sent Downstream (001b)
received Upstream (000e)
received Upstream (000f)
sent Downstream (xxxx)
received Upstream (001f)
sent Downstream (0210)
received Upstream (001b)
received Upstream (0000)
sent Downstream (0000)
received Upstream (0001)
sent Downstream (1111)
received Upstream (0002)
sent Downstream (2222)
received Upstream (0003)
sent Downstream (3333)
received Upstream (0004)
sent Downstream (4444)
received Upstream (0005)
sent Downstream (5555)
received Upstream (0006)
sent Downstream (6666)
received Upstream (0007)
sent Downstream (7777)
received Upstream (0008)
sent Downstream (8888)
received Upstream (0009)
sent Downstream (9999)
sent Downstream (aaaa)
sent Downstream (bbbb)
received Upstream (0308)
sent Downstream (cccc)
received Upstream (000a)
sent Downstream (dddd)
received Upstream (000b)
sent Downstream (eeee)
received Upstream (000c)

At 182445000
At 182530918
At 182632959
At 182645000
At 182734999

ns): TLP Packet sent Downstream (ffff)
s): TLP Packet received Upstream (000d)
s): TLP Packet received Upstream (000e)
s): TLP Packet sent Downstream (0210)
ns): TLP Packet received Upstream (000f)
)
)

(

(

(

(

(
At 182837040 (ns): TLP Packet received Upstream (001f)
At 182845000 (ns): TLP Packet sent Downstream (1f1f)
At 182939081 (ns): TLP Packet received Upstream (001b)
At 182945000 (ns): TLP Packet sent Downstream (lala)
At 183045000 (ns): TLP Packet sent Downstream (0000)
At 183145000 (ns): TLP Packet sent Downstream (1111)
At 183245000 (ns): TLP Packet sent Downstream (2222)
At 183245204 (ns): TLP Packet received Upstream (0210)
At 183345000 (ns): TLP Packet sent Downstream (3333)
At 183347244 (ns): TLP Packet received Upstream (0000)
At 183445000 (ns): TLP Packet sent Downstream (4444)
At 183449285 (ns): TLP Packet received Upstream (1111)
At 183545000 (ns): TLP Packet sent Downstream (5555)
At 183551326 (ns): TLP Packet received Upstream (2222)
At 183645000 (ns): TLP Packet sent Downstream (6666)
At 183653367 (ns): TLP Packet received Upstream (3333)
At 183745000 (ns): TLP Packet sent Downstream (7777)
At 183755408 (ns): TLP Packet received Upstream (4444)
At 183845000 (ns): TLP Packet sent Downstream (8888)
At 183857448 (ns): TLP Packet received Upstream (5555)
At 183945000 (ns): TLP Packet sent Downstream (9999)
At 183959489 (ns): TLP Packet received Upstream (6666)
At 184045000 (ns): TLP Packet sent Downstream (aaaa)
At 184061530 (ns): TLP Packet received Upstream (7777)
At 184145000 (ns): TLP Packet sent Downstream (bbbb)
At 184163571 (ns): TLP Packet received Upstream (8888)
At 184245000 (ns): TLP Packet sent Downstream (cccc)
At 184265612 (ns): TLP Packet received Upstream (9999)
At 184345000 (ns): TLP Packet sent Downstream (dddd)
At 184367653 (ns): TLP Packet received Upstream (aaaa)
At 184469693 (ns): TLP Packet received Upstream (bbbb)
At 184545000 (ns): TLP Packet sent Downstream (0210)
At 184571734 (ns): TLP Packet received Upstream (cccc)
At 184673775 (ns): TLP Packet received Upstream (dddd)
At 184745000 (ns): TLP Packet sent Downstream (eeee)
At 184775816 (ns): TLP Packet received Upstream (eeee)
At 184845000 (ns): TLP Packet sent Downstream (ffff)
At 184877857 (ns): TLP Packet received Upstream (ffff)
At 184945000 (ns): TLP Packet sent Downstream (1f1f)
At 185045000 (ns): TLP Packet sent Downstream (lala)

$finish called at time : 185065 ns : File “C:/aabuhjar/Xilinx_projects/PCIe/Simulation/pcie_tb.v"
run: Time (s): cpu = 00:00:01 ; elapsed = 00:00:06 . Memory (MB): peak = 2428.391 ; gain = 0.000

Reference: Mindshare - https://www.mindshare.com/eLearning/Course/
Core_PCle_eLearning_Course#

